skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Han, Jihong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Ma, Qiang (Ed.)
  2. Abstract Multicomponent high‐entropy alloys (HEAs) can be tuned to a simple phase with some unique alloy characteristics. HEAs with body‐centered‐cubic (BCC) or hexagonal‐close‐packed (HCP) structures are proven to possess high strength and hardness but low ductility. The faced‐centered‐cubic (FCC) HEAs present considerable ductility, excellent corrosion and radiation resistance. However, their strengths are relatively low. Therefore, the strategy of strengthening the ductile FCC matrix phase is usually adopted to design HEAs with excellent performance. Among various strengthening methods, precipitation strengthening plays a dazzling role since the characteristics of multiple principal elements and slow diffusion effect of elements in HEAs provide a chance to form fine and stable nanoscale precipitates, pushing the strengths of the alloys to new high levels. This paper summarizes and review the recent progress in nanoprecipitate‐strengthened HEAs and their strengthening mechanisms. The alloy‐design strategies and control of the nanoscale precipitates in HEAs are highlighted. The future works on the related aspects are outlined. 
    more » « less